epoint

Zrozumienie, jak aplikacje AI wpływają na architekturę sieci oraz wybór rozwiązań w obszarze ich dystrybucji oraz zabezpieczeń, to kluczowe kroki w odpowiedzi na nowe wyzwania technologiczne. Zmiany w dystrybucji obciążeń i wzorcach ruchu wymagają analizy, aby efektywnie implementować usługi, które zapewnią maksymalną efektywność, wydajność i redukcję kosztów. Temat przedstawia Bartłomiej Anszperger, solution engineering manager w firmie F5.

Każda nowa generacja architektury aplikacji wpływa na ruch w sieci. Jest to istotne, ponieważ każda znacząca zmiana wymaga dostosowania systemów dostarczania i zabezpieczeń aplikacji. W przypadku aplikacji AI, choć skala i złożoność problemów wzrastają, wyzwania pozostają znajome.

Wyzwania związane z aplikacji AI są dobrze znane. Choć te problemy ewoluują, wiele z nich dotyczy zagadnień, które rozwiązywaliśmy od minionej dekady. Sztuczna inteligencja zmienia jednak sposób dystrybucji obciążeń i wzorce ruchu. Większość tego ruchu w sieci to ruch aplikacyjny, a coraz częściej ruch API i na tym polega różnica. Zrozumienie tych nowych wzorców i sposobu ich dystrybucji między rdzeniem, chmurą a brzegiem sieci daje wgląd w to, jakie usługi dostarczania i bezpieczeństwa aplikacji są potrzebne oraz gdzie należy je wdrożyć – zaznacza Bartłomiej Anszperger.

Nowe wzorce ruchu

Jedną z kluczowych konsekwencji wdrożenia sztucznej inteligencji jest wzrost ruchu w dwóch osiach: poziomej (E-W) i pionowej (N-S). Jego znaczna część na linii N-S będzie pochodzić od aplikacji AI, co sprawia, że wychodząca ścieżka N-S stanie się strategicznym punktem kontroli obok tradycyjnej ścieżki przychodzącej.

W perspektywie najbliższych 2–3 lat aplikacje AI będą uzupełniać istniejące portfele, a konsolidacja nastąpi wraz ze zrozumieniem popytu na interfejsy języka naturalnego (NLI). Zwiększona dystrybucja na ścieżce N-S wymaga wzmocnienia usług bezpieczeństwa na granicy firmowej. Jednocześnie rosnący ruch E-W w różnych środowiskach wymusza rozwój sieci jej łączących (ang. multicloud networks) oraz rozwiązań bezpieczeństwa a także kontroli dostępu wewnątrz organizacji.

W efekcie w architekturze AI pojawiają się dwa nowe punkty integracji usług (ang. insertion points), które stwarzają okazję do przemyślenia strategii wdrożeń nowych elementów pod kątem efektywności, redukcji kosztów i skuteczności działania. Jest to szczególnie ważne w obliczu coraz częstszych luk w zabezpieczeniach serwerów inferencyjnych, które komunikują się z klientami przez API. Wdrażanie zabezpieczeń API na tym poziomie jest kluczowe dla ochrony modeli AI i serwerów, oraz pełni rolę „ostatniej linii obrony” i umożliwia szybką reakcję na nowe zagrożenia dzięki programowalnym rozwiązaniom bezpieczeństwa.

Punkty integracji dla dostarczania i bezpieczeństwa aplikacji

W oparciu o wzorce wnioskowania AI można wyróżnić sześć różnych punktów integracji usług aplikacji. Każdy z nich pozwala zoptymalizować bezpieczeństwo, skalowalność i wydajność w rozszerzonej architekturze.

  1. Usługi globalne (dla całej organizacji)

Na tym poziomie dominują głównie usługi bezpieczeństwa, obejmujące również rozwiązania na poziomie firmowym, takie jak DNS, GSLB i sieci wielochmurowe. Mechanizmy bezpieczeństwa, takie jak DDoS i Bot Protection, doskonale się tu sprawdzają, ponieważ uniemożliwiają zapobiegają wykorzystaniu krytycznych (i kosztownych) zasobów głębiej w infrastrukturze IT, szczególnie w aplikacjach, które są hostowane w chmurze publicznej.

  1. Usługi wspólne (dla konkretnej lokalizacji)

Zapewniają dodatkową ochronę przed atakami oraz gwarantują dostępność aplikacji i infrastruktury. Oferują takie funkcje jak balansowanie obciążenia dla aplikacji, API czy usług infrastrukturalnych (np. zapory ogniowe, SSL VPN).

  1. Usługi aplikacyjne (dla konkretnej aplikacji)

W tym punkcie usługi są ściśle powiązane z aplikacjami lub API, które obsługują i chronią. Obejmują zapory aplikacyjne (WAF), lokalne balansowanie obciążenia oraz kontrolę dostępu, zabezpieczając komunikację pomiędzy użytkownikiem a aplikacją.

  1. Sieciowanie mikrousług (dla konkretnego klastra)

Usługi na tym poziomie są zwykle wdrażane w ramach infrastruktury Kubernetes i obejmują m.in. wzajemne uwierzytelnianie transportowe (mTLS) oraz warstwę sieci (ang. service mesh), które zabezpieczają komunikację między aplikacjami.

  1. Usługi wnioskowania AI (dla kompleksów obliczeniowych AI)

Ten nowy punkt integracji jest specyficzny dla aplikacji AI i obejmuje funkcje dostarczania i bezpieczeństwa zaprojektowane specjalnie w celu dostarczania i ochrony usług wnioskowania AI. Typowe rozwiązania to balansowanie obciążenia oraz ograniczanie przepustowości na poziomie warstwy aplikacyjnej w celu ochrony API wnioskowania AI.

  1. Usugi infrastrukturalne AI (dla serwerów AI)

Ostatni, nowy punkt integracji jest skorelowany z siecią AI. Te usługi są wdrażane na jednostkach DPU (Data Processing Units) do obsługi zadań związanych z dostarczaniem i bezpieczeństwem. Dzięki temu procesory CPU są odciążone od z zadań związanych z infrastrukturą, dzięki czemu mogą być w pełni wykorzystane do przetwarzania zapytań zwiększając tym samym wydajność serwerów wnioskowania.

Większość usług dostarczania i bezpieczeństwa aplikacji można wdrożyć w dowolnym punkcie integracji , z wyjątkiem tych zaprojektowanych do specyficznych środowisk, jak kontrolery wejścia i warstwa sieci aplikacyjnej w Kubernetes, które wymagają dostosowania do konkretnych infrastruktur.

Wybór odpowiedniego punktu integracji powinien uwzględniać takie czynniki jak skuteczność zabezpieczeń, wydajność operacyjną oraz optymalizację koszty, zarówno tych operacyjnych, jak i związanych z przetwarzaniem ruchu w infrastrukturze IT. F5 wspiera wdrażanie tych usług w jak największej liczbie punktów integracji w różnych środowiskach, umożliwiając organizacjom dopasować je do ich specyficznych rozwiązań infrastrukturalnych i środowiska – komentuje Bartłomiej Anszperger.

Choć istnieją sprawdzone praktyki dopasowywania usług do punktów integracji, każda architektura korporacyjne ma swoje unikalne wymagania. To właśnie dlatego elastyczność i programowalność w projektowaniu usług aplikacyjnych oraz zabezpieczeń są kluczowe dla efektywnego zarządzania infrastrukturą IT.

Subscribe
Powiadom o
guest
0 komentarzy
najstarszy
najnowszy oceniany
Inline Feedbacks
View all comments